Solving Systems of Equations by elimination method
Use elimination to solve. Check your answers (This means to substitute your values back into BOTH equations).
1.

$$
7 c-5 d=11
$$

$$
-4 d-2 c=-14
$$

$$
\begin{gathered}
4(7 c-5 d=11) \\
-5(-2 c-4 d=-14) \\
(3,2)
\end{gathered}
$$

Check into originals!

$$
\begin{gathered}
7 c-5 d=11 \\
7(3)-5(2) \stackrel{?}{=} 11 \\
21-10=11 \\
11=11 \sqrt{2}
\end{gathered}
$$

$$
\begin{aligned}
& 6=-14 \checkmark \\
& -14
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. Let's make up numbers for the equations and solve it. } \\
& \text { No one said the solutions had to be "nice" numbers! } \\
& \begin{array}{r}
-5(x+y=2 \\
5 x-\frac{1}{3} y=12
\end{array} \\
& \begin{aligned}
-5 x-5 y & =-10 \\
-5 \frac{1}{3} y & =2
\end{aligned} \\
& \frac{-3}{16} \cdot \frac{-16}{3} y=\frac{2}{1} \cdot \frac{-3}{16} \quad\left(\begin{array}{l}
y \text { subs into } \\
x+y=2 \\
x+-3=2
\end{array}\right. \\
& y=\frac{-6}{16} \div 2 \\
& \frac{\text { Check in } B 0 \text { THE }=\frac{y}{8} \text { 's }}{x+y=2 \quad 5 x-\frac{1}{3} y=12} \\
& \begin{array}{rl}
23 / 8+\left(\frac{-3}{8}\right) \stackrel{?}{=} 2 & 5 x-\frac{1}{3} y=12 \\
2=2 \sqrt{=} & \left.5 \frac{3}{8}\right)-\frac{1}{3}\left(\frac{-3}{8}\right) \stackrel{?}{=} 12 \\
& \left.5\left(\frac{19}{8}\right)+\frac{1}{8}\right) \stackrel{?}{=} 12
\end{array} \\
& \frac{95}{8}+\frac{1}{8} \stackrel{?}{=} 12 \\
& \frac{96}{8} \stackrel{?}{=} 12 \\
& 12=12 J
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sur } 7 c-5 d=11 \quad 7(3)-5 d=11 \\
& \text { Check BOTH FQS }-21-5 d=11 \\
& \begin{array}{lll}
-4 d-2 c=-14 & \frac{-5 d}{}=\frac{-10}{-5} \\
-4(2)-2(3) \stackrel{-14}{-} & d=2^{2} \\
-8-6=-14 &
\end{array} \\
& -8-6=-14
\end{aligned}
$$

Solve by elimination.
Solve by substitution.

$$
\begin{aligned}
& \text { 3. } 2 x=3 y+5 \\
& 6 x-9 y=10 \\
& \text { 4. } \begin{aligned}
& x-3 y=7 \\
& y=2 x-9
\end{aligned} \\
& \binom{\text { solution }}{(4,-1)} \\
& \left.\begin{array}{rlrl}
-3(2 x-3 y & =5)-6 x+9 y & =-15 & x-3(2 x-9)
\end{array}\right)=7 \quad \text { check } \\
& x-6 x+27=7 \quad x-3 y=7 \\
& -5 x+27=7 \quad 4-3(-1)=7 \\
& \text { FALSE } \\
& \text { SO NOSOLUTION! } \\
& \text { Questions: } \\
& \frac{-5 x}{-5}=\frac{-20}{-5} \quad y=2 x-9 \\
& \begin{array}{l}
\text { What would the graph of \#3 look like? } \begin{aligned}
y=2 x-9 \quad-1=8-9 \\
\text { Parallel lines }
\end{aligned} \quad \begin{aligned}
y(4)-9=8-9=-1 \quad-1=-1 /
\end{aligned} \\
\hline
\end{array}
\end{aligned}
$$

When is it easiest to use the substitution method? when variable is The elimination method? Graphing? hers singled out when BOTH EQUATIONS if bothers or isolated ARE IN STANDARD FORM

